

Outline

- **What is Robotic Vision?**
- Feature-based methods
- A feature based method for Door Detection
- Deep Learning in Computer Vision (CNN)
- Deep Learning in RV for Door Detection

Feature Extraction in Images

Raw data:

- Every bit of information is used
- Data has a low expressive power
- We can use raw sensors data for solving low-level tasks (e.g., obstacle avoidance).

But with images?

Images need an intensive **feature extraction**:

- **Low-level features (geometric primitives):** abstraction of raw data which deletes poor or useless information
- **High-level features (objects):** maximum abstraction of raw data, providing a lower volume of information with a high expressiveness

Robotic Vision

- Feature extraction through **Computer Vision** techniques
- **Robotic Vision** is the application of Computer Vision techniques in Mobile robotics for solving high level tasks
- While *Computer Vision* translates images into **information**, *Robotic Vision* translates images into **actions:**
	- A robot is an *active* agent
	- A robot often operates in *uncontrolled* and *unpredictable conditions* (the real world)
	- The actions executed by a robot are based on *incomplete* and *uncertain knowledge*
	- Actions can have potentially catastrophic results

Computer Vision in Mobile Robotics

Computer Vision in Mobile Robotics is useful to enable mobile robot to solve high level tasks:

- Object Grasping
- Object finding
- **Visual SLAM:** Simultaneous Localization and Mapping using visual features captured with CV techniques

Sistemi Intelligenti Avanzati 2024/2025 6

Outline

- What is Robotic Vision?
- **Feature-based methods**
- A feature based method for Door Detection
- Deep Learning in Computer Vision (CNN)
- Deep Learning in RV for Door Detection

Sistemi Intelligenti Avanzati 2024/2025 7

Feature-based Methods for Object Detection

Feature-based methods:

- The *low-level features* (edges, corners, points, …) are extracted through **image processing** techniques
- The *high-level features* are obtained by combining the low-level features in wellengineered **geometric models** that describe the object of interest

From [Siegwart, Introduction to Autonomous Mobile Robots]

Image Processing for Feature Extraction

Image processing is a form of signal processing:

- It treats images as discrete two-dimensional signals $I(x, y)$, where:
	- (x, y) are the spatial coordinates and
	- The value of I at any point (pixel) is the *intensity* or *gray level*

Sistemi Intelligenti Avanzati 2024/2025

Image Filtering

Image filtering:

- Filtering refers to the process of accepting or rejecting certain frequencies
- **Lowpass filters** attenuate signals
	- Goal: blur images or remove noise
- **Highpass filters** cut off the frequencies lower than the cutoff frequency
	- Goal: feature extraction (edge, corner, …)

Highpass filter

Filtering in Images: Convolution Convolution: • applies spatial filtering to images • modifies the intensity of each pixel based Kernel centered on the pixel (x, y) on its neighborhood weighted by a **kernel** (x,y) (x,y) The value of this pixels α \boldsymbol{b} depends on its neighboring pixels weighted by the kernel $I'(x, y) = \sum$ \sum $w(s, t)I(x + s, y + t)$ $s=-a$ $t=-b$ Image I Image $$ • I and I' : input and output image w : the kernel (a small matrix containing the weights associated to the pixels) • The kernel (odd) dimensions Sistemi Intelligenti Avanzati 2024/2025 11

Smoothing Filters: Gaussian filter

The idea is to build a kernel by approximating an isotropic 2D Gaussian

$$
G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}
$$

Kernel parameters:

- \cdot d: kernel's dimensions
- \cdot σ : the standard deviation

 0.2 0.15

 $G(X, Y)$ 0.1 0.05 $\ddot{\mathbf{0}}$ 2

9

٦

Г

Edge Detection: a Challenging Task

- 1. The signal of an image is noisy and simply computes derivatives is not enough to detect edges
-
- 3. Typically, the signal change smoothly in proximity of an edge, so how to precisely locate an edge?

Edge Detection: a Challenging Task

- 1. The signal of an image is noisy and simply computes derivatives is not enough to detect edges
- 2. How can we distinguish between noisy patterns and real shape contours in images?
- 3. Typically, the signal change smoothly in proximity of an edge, so how to precisely locate an edge?

Sistemi Intelligenti Avanzati 2024/2025 27

Edge Detection: a Challenging Task

- 1. The signal of an image is noisy and simply computes derivatives is not enough to detect edges
- 2. How can we distinguish between noisy patterns and real shape contours in images?
- 3. Typically, the signal change smoothly in proximity of an edge, so how to precisely locate an edge?

Canny Edge Detector

The Canny edge Detector is a multi-phase algorithm to detect edges in images It treats edges detection as a signal-processing problem with 3 specific goal:

- Minimizing the edges generated by the image noise
- Achieving the highest precision on the location of edges
- Minimizing the edge responses associated to a single edge

Steps:

- 1. Noise reduction
- 2. Gradient calculation
- 3. Non-maximum suppression
- 4. Double threshold
- 5. Edge tracking

Canny Edge Detector: Noise Reduction

Starting for an image I, the noise reduction is performed by applying a Gaussian filter G_{σ} to blur the image

Canny Edge Detector: Gradient Calculation

- In images (considered as discrete bi-dimensional signals), we can **approximate derivatives** through **convolution** with kernels that **highlights the signal change in both** x and y **directions**
- This can be done with the **Sobel kernels:**

$$
S_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}
$$

$$
S_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ -1 & 2 & 1 \end{bmatrix}
$$

Canny Edge Detector: Gradient Calculation

By applying the Sobel kernels (S_x and S_y) to our image I_G , we obtain:

Canny Edge Detector: Non-Maximum Suppression

Canny Edge Detector: Edge Tracking

The last phase consists of **transforming weak pixels** into **strong ones**, if and only if at least one in the surrounding is strong

Corner Detector

Considering the gradients found in the Canny algorithm, the corners are located in those pixels where the gradients are far from zero in both x and y directions

Harris Corner Detector

The Harris algorithm to detect corners works in the same way as Canny:

- 1. Noise reduction
- 2. Gradient calculation
- 3. Harris response calculation
- 4. Non-maximum suppression

Outline

- What is Robotic Vision?
- Feature based methods
- **A feature based method for Door Detection**
- Deep Learning in Computer Vision (CNN)
- Deep Learning in RV for Door Detection

Sistemi Intelligenti Avanzati 2024/2025

Door Detection in Mobile Robotics

Doors represent high-level features of an environment that can help robots to perform better its task

- **Doors represent dynamic obstacles**, that change the topology of the environment in which a robot operates
- Information about doors (such as location and status) can help robots to better perform their main tasks:
	- Mapping
	- Planning
	- Navigation

A Feature-based Door Detection Method

In [1], a feature-based method to detect doors is presented. To perform door detection, this method:

- 1. Extracts corners and edges from images
- 2. Aggregates these features to build the geometric model of a door, which is composed by 4 corners connected by 4 edges

 = 3 = 5 *and Corner Features*", 2010 [1] Yang, Tian, "*Robust Door Detection in Unfamiliar Environments by Combining Edge*

Sistemi Intelligenti Avanzati 2024/2025 48

Feature Extraction

From [Yang, Tian, "*Robust Door Detection in Unfamiliar Environments by Combining Edge and Corner Features*", 2010]

Feature extraction steps:

- 1. The image is scaled to be smaller (320x240) to reduce the number of features
- 2. The images is then smoothed with a Gaussian filter for denoising purposes
- 3. The image is elaborated with the algorithms of Harris and Canny to detect corners and edges
- 4. The contour of the image are considered edges and endpoints of open contours are also considered as corner, in order to detect partially occluded doors

640x480 non-smoothed 640x480 smoothed 320x240 smoothed

Geometric Model: Combining Edges and Corners

- Verify if the imaginary lines between corners match with a real edges found with the Canny algorithm
- For each corner group, each line is processed as follow:
	- **Fig. a** represents 4 candidate corners and 2 edges found woth Canny
	- **Fig. b** shows the imaginary lines that connect the corners
	- Each line is augmented with a mask (**Fig. c**)
	- If and only if the real edge is included in the mask, the line is considered valid (**Fig. d**)
- A 4 corner group with valid edges is considered a door

= 3 = 5 From [Yang, Tian, "*Robust Door Detection in Unfamiliar Environments by Combining Edge and Corner Features*", 2010]

Sistemi Intelligenti Avanzati 2024/2025 50

Geometric Model: Door-Corner Candidates Filtering

Geometric Model: Door-Corner Candidates Filtering

Limitations of Feature-based Methods

Feature extraction methods (Gaussian filtering, Canny, Harris, …)

- A robot operates in unpredictable conditions
- These techniques are strongly parametrized:
	- The characteristics of the camera (resolution, dimension of the images, noise, calibration, etc)
	- The illumination conditions (not static)

Limitations of Feature-based Methods

- The second limit regards the aggregation of the features in geometric models
	- Feature extraction failures
	- The aggregation of features could be very difficult to model: a door have a relatively simple geometric shape, but a face?
	- Multiple objects share the same shape
	- Variable geometric shape (different viewpoints)


```
Outline
```
- What is Robotic Vision?
- Feature based methods
- A feature based method for Door Detection
- **Deep Learning in Computer Vision (CNN)**
- Deep Learning in RV for Door Detection

Computer Vision with Deep Learning

Deep Learning is a completely **end-to-end** approach:

- **In CV**, raw images do not represent strong features (require feature extraction)
- **Deep Neural networks** autonomously learns how to extract useful features to solve a specific task (or a dataset), eliminating humans in the loop

Deep Learning In CV

- **Naïve approach:** classify linearized images with MLP
- MLP are not suitable for treating images because they:
	- Are not suitable for larger inputs such as images
	- Pixels are not relevant features
	- Do not consider the **spatiality of images**

Convolutional Neural Networks

Convolutional Neural Network (CNN), composed of:

30

Benefits of Convolutions – Equivariance to Translation

A Convolution Neural Network

A CNN is composed of two parts that perform:

- 1. the first part performs **feature extraction**. It is composed by consecutive convolutional and pooling layers
- 2. The second part performs **feature classification**. It is composed by a feed-forward network (MLP)
Eully-Connected Fully-Connected

The Training of a CNN Training: • A **forward propagation step** to evaluate the loss of the CNN • A **backward propagation step** with gradient descent to adjust the learnable parameters: • The kernels of the convolutional layers • The weights of the MLP Output Example $\hat{y} = [5.4 \quad ... \quad 0.2]$ Forward propagation $=[1 \dots 0]$ **Fully-Connected** \hat{y} Loss Output softmax Loss \hat{y} e ï $|y|$ $\hat{y}_i =$ n1 channel n1 cha $\Sigma_j\,e^{\hat{\mathcal{Y}}}$ $L =$ $y_i * log(\hat{y}_i)$ $(24 \times 24 \times n1)$ $(12 \times 12 \times n1)$ $(8 \times 8 \times n2)$ $(4 \times 4 \times n2)$ $(28 \times 28 \times 1)$ OUTPUT $\hat{y} = [0.7 \dots 0.1]$ $i=0$ Backward propagation Sistemi Intelligenti Avanzati 2024/2025 74

34

Door Status Detection with Deep Learning

Inside our laboratory, we are working on these challenges considering the task of **Door Status Detection**[1]. In particular, we focus on the following issues:

- 1. Existing visual datasets do not represent the challenging point of view of mobile robots
- 2. When a robot is deployed in an unknown environment, the performance of an endto-end model degrade

[1] Antonazzi, Basilico, Luperto, Borghese "Enhancing Door-Status Detection for Autonomous Mobile Robots during Environment-Specific Operational Use"

Images from the robot POV

Images from an existing dataset

Dataset Collection

Dataset characteristics:

- Huge amount of images
- From different environment
- From the robot

How to acquire a dataset?

- **Real world:** best solution but impractical (time consuming, data annotations, …)
- **Simulation using game engines:** allow to capture a wide amount of annotated image but
	- How to create realistic environment?
	- The images are not photorealistic
- **Photorealistic simulation:** frameworks that virtualize environments scanned from the real world

Dataset Collection

Dataset collected using **Gibson Env:**

- About 5k images
- From 10 different environments
- **Used for training the general detector**

General Detector

We build the GD by **fine-tune** DETR (Detection Transformer). Its architecture is composed of:

- **CNN:** a deep convolutional networks used for feature extraction
- **Transformer:** a modern deep architecture (initially developed for natural language process) which is able to find complex relationships between a sequence of items (in this case, the features of an image)
- **MLP:** which classifies the output of the transformer to find the bounding boxes and their labels

Results in the Real World

The performance are measured using the AP (average precision) metric, which is computed over the two different object categories: closed and open doors

Average results over all environments

Results in the Real world Sistemi Intelligenti Avanzati 2024/2025 99 The detection accuracy increases with consecutive fine–tune operations GD_{-e} QD_e^{25} QD_e^{50} QD_e^{75}

Results in the Real World

Fine–tuning with only the 25% of new images is enough to classify challenging examples

